© Kamla-Raj 2018

PRINT: ISSN 0972-3757 ONLINE: ISSN 2456-6330

Int J Hum Genet, 18(4): 282-291 (2018) DOI: 10.31901/24566330.2018/18.4.674

ITGα4 Inhibition by miR-30d as a Potential Target in Relapsing Form of MS Therapy

Fatemeh Khazaeli Najaf Abadi¹, Zeinab Khazaei Koohpar^{2*} and Seyed Hossein Hejazi³

^{1,2}Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran ³Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

KEYWORDS Flow Cytometry. miR-30d. HEK293T. ITGα4. Q-RT-PCR

ABSTRACT Multiple sclerosis (MS) is caused by demyelination of neurons. Dysfunction of α 4-integrin ($ITG\alpha4$) in lymphocyte surface is associated with neuron demyelination. Herein, inhibitory effect of hsa-miR-30d on $ITG\alpha4$ gene expression in HEK293T cells has been evaluated. Bioinformatics approaches were used to identify the miRNAs that can potentially target $ITG\alpha4$. miR-30d was transfected into HEK293T cells using TurboFect reagent. Flow cytometry analysis was performed to evaluate $ITG\alpha4$ and miRNAs transfection. $ITG\alpha4$ expression level was surveyed in the transfected cells using Q-RT-PCR. MTT assay was carried out in the HEK293T cells. In silico analysis predicted that the miR-30 family targets $ITG\alpha4$. Flow cytometry analysis showed that $ITG\alpha4$ expression in HEK293T cell surface decreased after miR-30d transfection. The expression of $ITG\alpha4$ decreased in transfected cells by miR-30d. Thus, miR-30d can down regulate $ITG\alpha4$ in the HEK293T cells. It can be considered as a silencing approach to decrease $ITG\alpha4$ expression in MS patients and cancers.